Физическая теория «всего» сущего
08-12-2024Роджер Пенроуз
Будучи в Оксфорде, я встречался с Пенроузом, хотя и не был близко с ним знаком. Он — типичный англичанин старой школы, сдержанный, несколько ироничный, избегающий толпы и дешевой популярности. Память о том, что Пенроуз участвовал в комиссии, принимавшей решение о моем приеме в Оксфорд, драгоценна для меня. Его автограф стоит на экземпляре его книги «The Emperor’s New Minci»
Сэр Роджер известен широкой публике как писатель, автор нескольких замечательных популярных книг, посвященных наиболее острым проблемам физики и математики. Являясь одним из самых блестящих умов в своей области (наиболее серьезные его достижения относятся к теории гравитации), сэр Роджер знает, о чем пишет.
Наиболее известная российскому читателю книга Пенроуза — «Новый ум короля» — посвящена проблеме искусственного интеллекта. В этой книге он отстаивает ту точку зрения, что человеческий интеллект является именно человеческим, то есть его нельзя воспроизвести в какой-то другой конструкции, поскольку физический состав нашего мозга играет определяющую роль в том, как функционирует наше мышление и как мы решаем возникающие перед нами задачи. По этой причине популярное ныне сравнение человека с компьютером ложно.
Книга начинается с вопроса о том, нужно ли, приступая к выполнению какой-то задачи, понимать, что ты делаешь, или же можно безо всякого понимания ограничиться просто четким выполнением набора инструкций. Именно так, то есть скрупулезно, шаг за шагом следуя инструкциям, действуют все известные нам машины. Все они, независимо от конкретной конструкции, являются различными воплощениями так называемой универсальной вычислительной машины, или «машины Тьюринга», подробно обсуждаемой Пенроузом. Такая машина работает алгоритмически, то есть все ее операции происходят в виде дискретных шагов и так, что каждый следующий шаг обусловлен предыдущими. В то же время то, что мы называем пониманием, связано с охватом проблемы в целом и является, таким образом, примером неалгоритмического поведения. Несмотря на кажущуюся очевидность последнего утверждения, оно усиленно оспаривалось и продолжает оспариваться. Даже сам великий британский математик Тьюринг, введший понятие универсальной машины, считал, что мозг тоже является такой машиной, хотя, надо отдать ему справедливость, твердой уверенности в этом у него не было.
Роджер Пенроуз стал следующим после Витгенштейна серьезным критиком теории «мозг=компьютер». Дав длинный и подробный разбор аргументов Тьюринга и сторонников его теории, Пенроуз показал или, скорее, напомнил читателям о том, что человек способен решать задачи, которые машина Тьюринга решать не может, и, следовательно, наше мышление не является алгоритмическим.
Поскольку алгоритмичность машин обусловлена тем, что они в своем функционировании следуют законам классической механики с ее детерминизмом, Пенроуз полагает: неалгоритмическое поведение имеет корень в квантовой механике. Как мы уже обсуждали в медитации «Есть?», детерминизм (предопределенность) не есть абсолютный закон нашего мира; законы, управляющие движениями микрочастиц (квантовая механика) не предполагают жесткой причинно-следственной связи. Если квантовая механика влияет на работу мозга, то это дает возможность объяснить неалгоритмичность происходящих там процессов. Вопрос, конечно, в том, имеет ли она отношение к его работе на том уровне, где происходит анализ информации и отдаются приказы нашим мускулам и другим органам. Тут Пенроуз, высказавший некоторые конкретные предложения о том, где именно квантово-механические эффекты могли бы проявиться наиболее отчетливо, вступил в конфликт со многими биологами, начисто отрицающими и его предложения, и вообще роль квантовой механики в мозговых процессах. Не думаю, однако, что спор этот можно считать завершенным.
На меня лично Пенроуз более повлиял не полемикой со сторонниками искусственного интеллекта, а своим бескомпромиссным платонизмом. Ни один из ныне живущих ученых не выдвинул лучших аргументов в пользу существования мира идей, внеположного миру чувственно воспринимаемых предметов. Эти идеи сэра Роджера кардинальным образом повлияли и на меня. Наиболее краткая их экспозиция дана Пенроузом в его более позднем труде «The Road to Reality» («Путь к реальности»), тоже переведенном на русский язык. Я думаю, что, подобно Платону, он называет здесь реальностью мир идей. «Треугольник Пенроуза» — воплощенная невозможность, — придуманный им в 1950 году, превратился в его книге в образ нашего бытия.
Каждый из миров, изображенных Пенроузом, — мир ментальный, мир математики и мир физический, — хотя бы отчасти (если не целиком) отражается в другом. Хотя внимательный читатель найдет, что медитации, предложенные в моей книге, во многом являются развернутым комментарием к этой схеме, я все-таки, ввиду ее важности, дам краткий комментарий. Фигура циклична, и можно начинать откуда угодно, но, отдавая дань предрассудкам нашего времени, начнем с физического мира. Наиболее распространенный ныне взгляд на вещи состоит в том, что мир физический независим от нас (объективен) и, более того, мы сами являемся его продуктом (хотя бы отчасти). Такая точка зрения принимается практически всеми, что и показано в изображении. Далее: есть мир идей, куда Пенроуз поместил только математику. Не думаю, что он ограничился ею потому, что он в грош не ставит, например, искусство. Причина тут в другом: в случае с математикой совершенно ясно, что мир ее, с одной стороны, объективен, то есть не зависит от наших прихотей, а с другой стороны, не совпадает с миром природы. Про это много говорилось (в частности, в медитациях «Числа» и «Антропный принцип») и еще будет говориться на этих страницах. Об искусстве рассуждать намного сложнее, хотя я и пытался в медитации «Красота» намекнуть на то, что «хорошее» искусство принадлежит к тому же объективному миру идей, что и математика (а «плохое», наверное, попадает туда же, где находятся ошибочные математические работы). Пенроуз допускает, что не весь этот мир доступен человеку. Мир идей служит как бы чертежом или программой для мира физического. Совершенно понятно, что мир идей не изоморфен физическому миру, так как есть множество математических построений и моделей, которым в физическом мире нет никакого соответствия. Управляется ли физический мир всецело математическими законами? Мы не можем сказать это с полной уверенностью по нескольким причинам. Во-первых, естественные науки изучают только те явления, которые повторяются. Принцип воспроизводимости есть их основной критерий, и все, что под него не подпадает, автоматически выпадает из ее поля зрения. Во-вторых, неясно, что делать с той частью физического мира, где проявляет свою активность человек. Существуют ли, например, законы истории? У нас нет ясного представления на этот счет. Следующим миром является мир ментальный, в котором отражаются оба других. Это, собственно говоря, и есть мир, в котором мы живем, другие два мы конструируем, воссоздаем через сознательный или бессознательный анализ наших ощущений и восприятий. Итак, чудесный треугольник замкнулся. Он есть образ нашего мира и он, как и наш мир, невозможен.Будучи специалистом по теории гравитации (в 1988 году Пенроуз вместе со Стивеном Хокингом получил премию Вульфа), ученый очень много говорит в своих книгах и о проблеме ранней Вселенной, и о парадоксах, возникающих при попытках объединить квантовую теорию с теорией гравитации. Я мало касался этих проблем, отчасти потому, что не являюсь специалистом в этой области, отчасти потому, что не считаю нужным ставить нашу духовность в зависимость от событий, происшедших тринадцать миллиардов лет назад, когда наш мир только начинался. Тем не менее мне хочется привести одно из рассуждений Пенроуза. Оно непосредственно касается довольно популярной ныне темы о случайности или неслучайности устройства мироздания. Напомню еще раз, что в полном согласии с Библией современная космология полагает, что Вселенная имеет начало во времени. Структура начального состояния неясна для нас, но начиная с 10-43 секунды (планковское время) от «начала», когда гравитационное поле стало по существу классическим, все становится более понятным. В частности, ясно, что в своем раннем младенчестве Вселенная была невероятно плотной, а вещество в ней было невероятно горячим. Понятие тепла для нас ассоциируется с беспорядком: чем горячее предмет, тем интенсивнее в нем беспорядочное, хаотическое движение атомов и молекул. Количественной мерой этого хаоса служит энтропия, которая, согласно второму закону термодинамики, со временем только возрастает. По этой логике энтропия Вселенной в наши дни должна быть выше, чем в ее младенческие мгновения, а следовательно, и уровень порядка тогда должен был быть выше, чем сейчас. Все это звучит парадоксально, ибо как соединить с порядком чудовищно высокие температуры первых мгновений? Пенроуз объясняет, что все дело в гравитации. Те огромные температуры, которые имели место в первые мгновения, есть температуры не всей Вселенной, а лишь ее вещества. Как целое Вселенная не имела определенной температуры, ибо вещество и гравитационное поле не находились (и не находятся) в термодинамическом равновесии. Поэтому, несмотря на высокую температуру материи, энтропия Вселенной была очень низкой. Насколько же низким, то есть насколько неслучайным было это первоначальное устройство и насколько уникальна была новорожденная Вселенная? Читатель, ты, наверное, спросишь, не безумно ли задавать такие вопросы и кто, кроме Бога, может на них ответить. Однако, оказывается, это можно сделать.
Астрономы оценили массу наблюдаемой Вселенной в 1088 масс протонов. Можно оценить максимальную энтропию, соответствующую этой массе. Энтропия есть мера хаоса, заданная формулой S = lnW, где W есть число разных структур, которые можно создать из наличного вещества или (что то же самое) число способов, которыми можно данную структуру (то есть в интересующем нас случае нашу Вселенную) разрушить. Наиболее совершенный и полный метод разрушения — это впихнуть все вещество в черные дыры. При этом теряется всякая информация, никакая структура не выживает. Энтропия черной дыры известна (формула Хокинга), она пропорциональна площади ее поверхности, а последняя определяется массой. Так вот, эта максимальная энтропия есть 10120. Это значит, что Вселенная есть приблизительно одна из десяти в степени 10 со 120-ю нулями. Вот вам мера уникальности нашего мира. Ну, как вам такое невозможное число? Оно под стать нашему невозможному миру.
Колледж Троицы (Trinity). Кембридж
Я провел в Тринити два месяца в 2000 году, работая параллельно в математическом институте Исаака Ньютона. Мало на земле найдется мест, где совершилось столько открытий, преобразивших нашу жизнь, как колледж Троицы в Кембридже. Здесь тридцать лет жил и трудился великий Исаак Ньютон, чьи разработки в области классической механики и оптики положили начало индустриальной революции, в XIX веке здесь занимался исследовательской работой Джеймс Клерк Максвелл, показавший, что электричество и магнетизм являются проявлениями единой силы, и тем проложивший дорогу электричеству, на котором стоит вся наша цивилизация. Парадоксально, но факт: теория электромагнетизма Максвелла ничего не говорила об электроне, который был открыт в 1897 году другим fellow of Trinity — Дж. Дж. Томпсоном. Наконец в 1912-м еще один Trinity man, лорд Резерфорд, «сконструировал» атом. В Тринити провел много лет Петр Леонидович Капица, пока его не заманили обратно в Советский Союз. Капица уехал, а его мантия осталась висеть на вешалке, где и дожидалась тридцать лет следующего его приезда.
В Тринити работал великий датский физик Нильс Бор, создавший теорию атома и заложивший основы квантовой механики, знаменитый индийский астрофизик С. Чандрасекар и великий индийский математик С. Рамануджан, известный своей способностью угадывать сложнейшие формулы, справедливость многих из которых до сих пор не удалось формально доказать. Членами колледжа состояли творцы современной математической логики Норман Уайтхэд и Бертран Рассел, а также знаменитый философ Людвиг Витгенштейн. В Тринити учился Владимир Набоков.
Сам я занимал комнаты, где, будучи студентом, жил лорд Байрон. В одной из них (думаю, в той, где я спал) он держал своего ручного медведя — в то время молодой человек просто обязан был слыть чудаком, иначе бы девушки не любили.
Меня водил по Тринити мой друг и очень дорогой мне человек Гилберт (Гил) Лонзарич, профессор физики в Кавендишской лаборатории и fellow of Trinity. Как и ваш покорный слуга, Гил родился в государстве, которого уже не существует. Но если про СССР еще многие помнят, то про Республику Фриули, просуществовавшую всего несколько лет после Второй мировой войны на границе между Италией и Югославией, мало кто знает. Каким-то образом семья Лонзарич перебралась в Америку, и в 1960-х годах Гил закончил университет Беркли. В отличие от меня он страшно левый, что, впрочем, не мешает нам при встречах говорить буквально дни напролет. Я помню, как однажды в Риме мы начали беседу в 7.30 утра, стоя в очереди в музей Ватикана, а закончили (не закончили, конечно, а прервали разговор!) в 6 вечера. «Я не разделяю ваших убеждений, но готов умереть за ваше право их высказывать», — как часто люди, считающие себя либералами, не следуют этой максиме, приписываемой Вольтеру. К сожалению, я тоже не всегда могу служить примером терпимости, но с Гилом мне почему-то удивительно легко не соглашаться, и при этом мы остаемся друзьями.
Я помню, как Гил показал мне собрание книг Исаака Ньютона, хранящееся в отделе библиотеки колледжа Троицы, куда допускаются только члены колледжа. Хотя я имел право доступа в этот «спецхран», без Гила я бы никогда не догадался туда пойти. С каким трепетом я прикасался к этим книгам! Многие из них были на иврите и посвящены, по всей видимости, учению каббалы.
Ньютон был интереснейшим человеком. Образ сухого механика и провозвестника века рационализма был создан в пропагандистских целях после его смерти; большой вклад в создание этого образа внес Вольтер. Реальный Ньютон — алхимик, мистик, еретик, толкователь Священного Писания, — был открыт в 30-е годы прошлого века знаменитым кембриджским экономистом (тоже членом колледжа Троицы) Мейнардом Кейнсом. Кейне приобрел на аукционе бумаги Ньютона и принялся их читать. То, что он там прочел, совершенно изменило наши привычные представления.
Вот цитата из доклада о Ньютоне, сделанного Кэйнсом в 1942 году в Королевском обществе: «Начиная с XVIII столетия о Ньютоне стало принято думать, как о первом и величайшем представителе новой эры науки, рационалисте, учившем нас мыслить строго и бесстрастно. Мне он представляется в другом свете. Думаю, что те, кто ознакомится с содержанием ящика, который он упаковал в 1696 году, покидая Кембридж, и которое, в неполном виде, дошло до нас, согласятся со мною. Ньютон не был первенцем века разума. Он был последним волшебником, последним из вавилонян и шумеров, последним великим умом, смотревшим на видимый и умный миры теми же глазами, что и те, кто начал создавать наше интеллектуальное наследие около 10 000 лет тому назад. Исаак Ньютон, посмертный ребенок (отец его умер до его рождения. — А. Д.), рожденный без отца в Рождество 1642 года, был последним чудесным ребенком, которому могли бы искренне и со смыслом поклониться волхвы».
Ньютон происходил из зажиточной фермерской семьи. Отец умер до его рождения; мать вышла замуж второй раз, отчима мальчик не уважал. Школьные учителя, заметив его замечательные способности, упросили мать оплатить его содержание в университете. Будучи студентом, Ньютон познал унижение; как сын незнатных родителей, он был вынужден прислуживать студентам из знатных семей. Его заметил глава колледжа Троицы, где Ньютон учился, видный по тем временам математик Исаак Барроу. Как же мала была тогда математика! Ни интегрального, ни дифференциального исчислений, ни математической логики, не говоря уже о таких дисциплинах, как топология и дифференциальная геометрия. И вот этому нелюдимому, суровому на вид студенту надлежало через двадцать лет расширить ее пределы почти до бесконечности, а также основать целые разделы физики, которой до него тоже, можно сказать, почти не существовало.
Однако ко времени окончания университета все это славное будущее еще никому не было известно и даже никаких формальных признаков его, в виде опубликованных научных статей, не было. Даже Барроу, считавший Ньютона гением, не смог бы оставить его в колледже, если бы не вмешалась судьба. В год окончания Ньютоном колледжа там открылось четыре вакансии. Три преподавателя сломали себе шеи, упав с лестницы, а один (поэт) замерз ночью в поле. Надо сказать, что пьют в Тринити здорово до сих пор. Один остряк так охарактеризовал его членов: «Лучшие умы нации с мозгами, замаринованными в портвейне» («The best minds of the nation with brains constantly pickled in port»).
Вот еще одна цитата из биографии Ньютона, написанной Питером Акройдом (перевод А. Капанадзе): «Часто замечают, что Ньютон вряд ли сумел бы вообразить свою теорию всемирного тяготения (поскольку она, по сути, была именно плодом воображения), если бы не его алхимические занятия. И в самом деле, идею невидимой силы, действующей между материальными частицами, он мог вывести из сочинений адептов этой науки. Сами алхимические изыскания основаны на вере в некий тайный принцип, одушевляющий вещественный мир, и теорию гравитации можно воспринимать как один из аспектов таких рассуждений».
Тут поднимается важная тема. Оказывается, даже ошибочное мировоззрение (в случае с Ньютоном я имею в виду главным образом его веру в алхимию) может способствовать великим открытиям! Проблему с тяготением видели уже современники Ньютона, обвинившие его в том, что он вводит в науку оккультную силу. И в самом деле, сила всемирного тяготения, по Ньютону, действует мгновенно на расстоянии. Для физики это жутко неудобно, а для алхимии вполне естественно. Ньютон не постеснялся ввести такую силу в физику, хотя о своих алхимических занятиях он никому, кроме узкого круга адептов (среди которых был, например, Роберт Бойль), не говорил. Скрытный был человек. И вот физика просуществовала с этой проблемой более двухсот лет, пока ее не разрешил Эйнштейн в рамках общей теории относительности.Законы мирозданья смутно
Во мраке крылись много лет,
Но рек Господь: Да будет Ньютон! —
И воссиял над миром свет.
(Александр Поуп)Математический институт Исаака Ньютона в Кембридже расположен на полпути от колледжа Троицы до Кавендишской лаборатории. Это очень красивое современное здание с необыкновенно удачным архитектурным решением. Вместо привычных длинных коридоров с рядами офисов по бокам там внутри идет как бы спираль. Здание похоже на яйцо, где офисному пространству отведена скорлупа, а внутренность оставлена для тех, кто хочет общаться, обсуждать науку, гонять чаи и т. д.
Мой друг математик Федя Смирнов, участвовавший в одной из программ, организованных институтом Ньютона где-то в начале 1990-х, рассказывал о том, как их посетил муж королевы, принц Филип (герцог Эдинбургский). Сотрудников и визитеров выстроили в шеренгу, принц сделал им смотр и обратился с вопросами. «Вы откуда (так и хочется добавить „молодцы“, но в английском такого слова нет. — А Д.)?» — «Из России». — «Россия? Знаю. Был в Киеве на конном заводе». Через некоторое время после окончания визита в институт пришло письмо, в котором принц выражал свои впечатления от визита в Кембридж. Он посетил там два места: институт Исаака Ньютона и конный завод. От института у него остались хорошие впечатления, а от конного завода плохие, и он советовал конному заводу брать пример с института.
Брукхэйвенская национальная лаборатория, где я работаю, является колоссальным заведением, расположенным в лесу, полном оленей, диких индеек и гусей, сусликов и, к сожалению, клещей. В лаборатории нашей находятся два огромных синхротрона (их теперь используют как большие — пару сотен метров в диаметре — рентгеновские аппараты для установления структуры разных сложных объектов типа биологических молекул) и колоссальный ускоритель элементарных частиц — релятивистский столкновитель тяжелых ионов (Relativistic Heavy Ion Collider — RHIC). С осознанием того, что обсуждалось нами в медитации про атомы, предназначение ускорителей несколько изменилось. RHIC нацелен главным образом на создание и изучение новых состояний вещества, возникающих при тех плотностях, которые существуют внутри атомных ядер. В огромном и откачанном до высокого вакуума его кольце разгоняют до скорости, близкой к скорости света, ионы тяжелых элементов и сталкивают их. При столкновении на краткий миг атомные ядра буквально входят друг в друга, протоны и нейтроны сливаются и образуется то, что называют кварк-глюонной плазмой. Плазма эта может быть разряженной или (в зависимости от энергии столкновения) более плотной. В последнем случае получается что-то вроде металла, где кварки играют роль электронов, а взаимодействие переносится не электромагнитными силами, как в металле, а глюонами (поле Янга-Миллса). Такой металл и похож и непохож на металлы, к которым мы привыкли, и изучать его страшно интересно. Даже я, не являясь ядерным физиком, приложил к этому руку, чем и горжусь. Разумеется, в ускорителе кварк-глюонная плазма существует только на краткий миг столкновения. Но, полагают, есть звезды настолько плотные, что кварк-глюонный металл там стабилен. Там, на звездах, наверное, и работает моя теория.
Ученым не дает покоя то, что теории, описывающие разные аспекты нашего бытия, не до конца согласуются друг с другом. Ну, казалось бы, и что? Почему не может быть так, что звезды управляются одними законами, а муравьи другими? Ан нет, наука, оказывается, в такое не верит. Ее вера в том, что все в природе управляется единой системой законов и в этом кодексе нет никаких противоречий, а следовательно, никаких судебных конфликтов и разбирательств, какой закон в данном случае какому предпочесть, быть не может. То есть в наших знаниях противоречия эти, конечно, возникают, но ученые верят, что они есть лишь следствие нашего непонимания того, что происходит, или, другими словами, недостатка наших знаний. Эта вера двигала науку всегда, и все возникавшие противоречия с блеском разрешались.
Чтобы не быть голословным, приведу несколько примеров. Классическая механика Ньютона не предполагала, что скорость света чем-то выделяется среди других скоростей, а в электродинамике Максвелла скорость света в вакууме есть максимально возможная в природе скорость. Противоречие это было замечено в конце XIX века и лишило ученых покоя. Разрешилось оно в специальной теории относительности, созданной усилиями Эйнштейна не без помощи Лоренца и Минковского, показавшей, что механика Ньютона справедлива лишь для скоростей, много меньших скорости света. Для скоростей же, сравнимых со скоростью света, была сформулирована релятивистская механика, являющаяся обобщением механики Ньютона и плавно переходящая в последнюю на малых скоростях. На этом противоречия не кончились. Оказалось, что созданная почти одновременно с теорией относительности для описания микромира квантовая механика и специальная теория относительности не стыкуются. Это противоречие было разрешено Полем Дираком и опять-таки привело к смещению парадигмы в физике. Оказалось, что для разрешения противоречия необходимо допустить, что у известных нам частиц есть своего рода зеркальные двойники — античастицы. То есть ради какой-то нестыковки в уравнениях потребовалось, ни много ни мало, допустить существование целого нового мира! И, что самое удивительное, этот мир, вызванный к жизни необходимостью разрешения математического противоречия в теории, был вскоре открыт! Ныне мы даже пользуемся плодами этих открытий, например в медицине. Недавно мне делали скан всего организма; скан этот назывался позитронной эмиссионной томографией, и делается он при помощи позитронов — зеркальных двойников электрона.
Теория Дирака положила начало тому, что сейчас именуется квантовой теорией поля, но не положила конец противоречиям. На очереди два следующих: между общей теорией относительности (которую можно также назвать теорией гравитации) и квантовой теорией поля — и между биологией и квантовой механикой.
Начнем с первого противоречия. Его суть состоит в том, что мы до сих пор не знаем, как включить квантовую теорию поля и гравитацию в общую схему. Согласно логике квантовой теории гравитационные силы должны переноситься частицами (для них даже название есть — гравитон), наподобие того, как электромагнитные силы переносятся фотонами или слабые взаимодействия W- и Z-бозонами. Логика логикой, а конкретных вычислений мы предъявить не можем. В практическом отношении это противоречие, казалось бы, не очень важно. Недостаток наших знаний мешает нам описать то, что происходило со Вселенной ближе к ее началу, чем 10-43 секунды. Ну, скажет скептик, обсуждать такие вопросы — это как рассуждать о том, сколько ангелов уместится на острие иглы. Такое только схоласты в Средние века обсуждали. Ну и говорите, что хотите, а нам это интересно — нас такие вопросы занимают потому, что мы верим: в знании нашем не должно быть никаких прорех.
Какие у нас, однако, основания думать, что гравитация подчиняется законам квантовой механики? Таковые имеются, и за их открытие в 2011 году была дана Нобелевская премия по физике. Читатель, наверное, слышал, что премия была присуждена за открытие того, что расширение Вселенной не замедляется, как думали раньше, а ускоряется. Ускорение это объясняют присутствием особой силы «антигравитации», которая, как ни странно, свойственна «пустому» пространству. Ничего совершенно пустого квантовая теория не допускает; из вакуума постоянно возникают и в нем исчезают частицы. Полагают, что такое мельтешение и ответственно за ту «темную энергию», которая наполняет, по-видимому, пустое пространство.
Когда-то Эйнштейн предположил существование такой формы энергии, следуя соображениям, ничего общего не имеющим с квантовой теорией, в которую он к тому же и не верил. Эйнштейна, воспитанного в традициях классической греческой философии Аристотеля с ее верой в вечность мироздания, раздражало то, что его теория предсказывала, что Вселенная имеет начало во времени. Для утверждения вечности сущего Эйнштейн ввел в свою теорию так называемый космологический (лямбда) член, приписывая тем самым энергию «пустому» пространству. Через несколько лет, когда оказалось, что Вселенная таки не стационарна, а расширяется, Эйнштейн отказался от космологического члена, назвав его «величайшим просчетом в своей жизни». Однако, как сейчас выяснилось, «темная энергия» существует, хотя плотность ее намного меньше того, что первоначально предполагал Эйнштейн, что, кстати, является одной из величайших загадок современной физики. Как ни мала величина космологической постоянной, ее вполне достаточно для того, чтобы мы могли убедиться: квантовые эффекты в гравитации существуют.
Не могу удержаться, чтобы не сделать небольшое отступление и не рассказать об этом знаменитом «просчете» Эйнштейна и о том, как сформировались современные взгляды на развитие Вселенной. Я много раз упоминал: ученые считают, что Вселенная имела начало во времени. Несмотря на то что осознание этого факта пришло к Эйнштейну и другим гигантам науки в 1920-е годы, после того, как астроном Хаббл открыл эффект красного смещения, консенсус среди широкой научной общественности установился только в 1960-е годы. Решающим фактором послужило открытие так называемого реликтового излучения или, проще говоря, света, дошедшего до нас с сотворения мира.
В «Братьях Карамазовых» Смердяков издевался над простой верой воспитавшего его слуги Григория: «Свет создал Господь Бог в первый день, а солнце, луну и звезды на четвертый день. Откуда же свет-то сиял в первый день?» Вот этот-то свет, сиявший в первый день, когда еще не было ни звезд, ни планет, и «увидели» в 1965 году американские физики Арно Пензиас и Роберт Вильсон. Открытие это совершилось при испытаниях новой огромной антенны, созданной совсем не для астрофизических целей. При испытаниях антенны Пензиас и Вильсон, к огромному своему раздражению, обнаружили, что не могут добиться хорошего качества приема на интересовавших их частотах из-за постоянного шума. Сначала думали, что источником шума являются недостатки конструкции антенны, потом грешили на голубей, потом думали, что его источником является расположенный поблизости город Нью-Йорк. Однако оказалось, что излучение идет из космоса и приходит равномерно со всех сторон.
Вскоре выяснился еще один удивительный факт: спектральный состав этого излучения совпадал с излучением абсолютно черного тела с температурой примерно 2,7 градуса по шкале Кельвина (-270 °C). Означать это могло только одно: наблюдаемое инфракрасное излучение есть продукт материи, равномерно заполнявшей Вселенную и находившейся когда-то в термодинамическом равновесии сама с собой и с излучением (так и определяется в физике понятие «абсолютно черного тела»). Надо ли говорить, что мир сегодняшнего дня ничем такое состояние не напоминает. Каждая звезда и планета имеют свою температуру (правильнее сказать, среднюю, поскольку температура внутренних частей и поверхности разная), свет сам с собой практически не взаимодействует и поэтому прийти в состояние термодинамического равновесия не может. Между тем, как было замечено теоретиками Гамовым, Альфером и Германом еще в 1948 году, теория Большого взрыва предсказывает, что когда-то вещество Вселенной находилось именно в таком состоянии. То есть, до достижения Вселенной возраста в 400 000 лет (по нашим нынешним стандартам), ее вещество представляло собой плазму, совершенно непрозрачную для излучения. Вот это и было тем, что физика называет абсолютно черным телом.
«И сказал Бог: да будет свет. И стал свет. И увидел Бог свет, что он хорош; и отделил Бог свет от тьмы» (Быт 1, 3–4). Отделение света от тьмы (вещества) произошло, когда температура материи упала ниже порога ионизации атомов водорода (около 3 000° К). С этого момента излучение (свет), продолжая оставаться в термодинамическом равновесии, фактически перестало взаимодействовать с веществом. По мере расширения Вселенной это оставшееся от «горячих» времен излучение остывало (при адиабатическом, то есть в отсутствие внешних источников тепла, расширении произведение Т3 V, где Т— температура по шкале Кельвина, a V — объем, остается постоянным, поэтому чем больше объем, тем меньше температура излучения) и к настоящему времени из горячего превратилось в крайне холодное. Вещество же, будучи в первое время после разделения просто горячей смесью водорода и гелия, развивалось далее своим путем, постепенно теряя однородность и структурируясь, формируя звезды (ставшие источниками своего собственного света), планеты и т. д.Возвращаясь к основной теме, скажу, что на место Теории Всего, обещающей примирить квантовую теорию с гравитацией, претендует ныне так называемая теория струн. «…Туман. Струна звенит в тумане…»
В попытках понять Вселенную физика все время возвращается к геометрии и музыке. «Физика есть геометрия», — говорил, вторя великому Платону, последний ученик Эйнштейна Джон Уилер. «В споре Платона и Демокрита о структуре материи был прав Платон», — написал в одном из своих эссе основатель квантовой механики Вернер Гейзенберг. О музыке сфер, звучащей во Вселенной, говорили Пифагор и его ученики.Попробую объяснить, в чем суть проблем, стоящих перед Теорией Всего. Все они в конечном итоге сводятся к тому, что наши представления о микромире основаны на неудачной концепции, а именно концепции частиц, унаследованной нами от древнего атомизма. Чтобы примирить эту концепцию с требованиями теории относительности, нам приходится предположить, что частицы есть точечные объекты, то есть буквально не имеют размера. Такое предположение диктуется тем соображением, что пространственные размеры меняются при изменении системы отсчета, а законы природы меняться НЕ ДОЛЖНЫ. В итоге получается, что мы хотим составить предметы, имеющие размер, из чего-то, размера не имеющего. Немудрено, что, введя в квантовую теорию такую абсурдную концепцию, как точечные взаимодействующие частицы, мы сразу получаем массу математических трудностей (интегралы расходятся, появляются бесконечности и т. д.). Особенно сурово все это выглядит, когда мы пытаемся квантовать гравитацию.
Первоначальная идея теории струн была чрезвычайно проста. Она сводилась к следующему рассуждению. Как показал Ричард Фейнман, общим решением уравнений квантовой механики является так называемый интеграл по траекториям, где волновая функция системы представляется суммой комплексных экспонент от (2π iS/h), где 5 есть классическое действие для данной траектории, a h — постоянная Планка (более подробные объяснения даны в приложении). Поскольку траектории представляют собой линии, получается, что мы суммируем по линиям в четырехмерном пространстве-времени. Так как действие для релятивистской частицы пропорционально интервалу между двумя точками на траектории (см. Приложение), а интервал не зависит от выбора системы координат, то такое представление удовлетворяет главному принципу физики об универсальности законов природы (по-ученому это называется принципом общей ковариантности). Итак, рассуждали ранние «струнщики», поскольку проблема в том, что линии не имеют толщины, давайте заменим их на поверхности и будем суммировать по поверхностям, а вместо действия как длины (интервала) будем считать его пропорциональным площади поверхности. Это похоже на то, что частицы как бы приобрели размер, стали либо колечками (замкнутые струны), либо отрезками (открытые струны), но размер этот не фиксирован, так как мы суммируем в волновой функции по поверхностям самых разных размеров, форм и топологий. Предполагается (это разумеется, должно следовать из теории), что в среднем размер этот чрезвычайно мал (порядка планковской длины ~ 10-35 метра; для сравнения: размер ядра атома водорода ~ 10-15 метра). Выглядит все это на первый взгляд не так сложно, но на поверку эта простота оказалась обманчивой. Настолько обманчивой, что, несмотря на колоссальные усилия последних тридцати лет, теоретически соединить гравитацию и квантовую механику пока не удалось.
Во-первых, оговорюсь сразу: если мы даже соединим квантовую теорию поля с гравитацией, никто не станет пользоваться этим для, например, синтеза новых лекарств в фармакологии или расчета свойств металлических сплавов. Это не означает, что у такой теории не будет практических следствий, следствия могут быть, и самые неожиданные. Однако, думаю, они, скорее всего, будут косвенными. Возникнут, например, какие-то новые отрасли математической физики, которые позволят установить более глубокие связи в отраслях уже существующих и лучше их понять. На этих страницах я много говорил о том, что в физике нет изолированных разделов, что все взаимосвязано, и повторю это опять. Помимо этого, и это, думаю, и вдохновляет «струнщиков» всего более, Теория Всего установит внутреннюю согласованность и непротиворечивость физики. Что ж, за это стоит побороться.
Но будет ли эта грядущая теория действительно Теорией Всего? Как насчет живого — эмоций, чувств, сознания, наконец?
Проблема внутреннего мира животных и человека и другая, более высокая — человеческого сознания являются наиболее сложными научными проблемами. Распространено мнение, что внутренний мир как-то так сам собой возникает, когда его материальный носитель достигает определенной степени сложности. При этом некоторые полагают, что система эта не должна даже быть «живой», и в этом смысле и силиконовый компьютер начнет что-то чувствовать, если сделать его достаточно сложным. Другие, как тот же самый Пенроуз, утверждают, что, чтобы чувствовать и мыслить, система должна быть именно живой, что конкретное физическое устройство организма важно, и связывают это с тем, что процессы в организмах, в отличие от процессов в компьютерах (с их точки зрения), управляются квантовой механикой.
Мне кажется, споря о том, как возник внутренний мир, забывают, что он такое, и, в частности, о том, что он фундаментально отличается от мира внешнего, объективного. Строго говоря, мир внешний, который мы склонны называть «реальностью», есть интеллектуальная конструкция, плод наших умозаключений. Мы не воспринимаем его непосредственно; мир, в котором мы живем, есть мир наших чувств, эмоций и, наконец, сознания. Допустим, однако, что внешний мир есть; допустим, что наши тела являются его продуктом; допустим даже, что наш внутренний мир не может существовать без определенного рода тела. Пусть так. Но при всем том не ясно ли, что внутренний мир не есть мир внешний, что он есть совершенно другое качество, невыразимое во внешних терминах? Может быть, это качество неотделимо от мира внешнего или, как его еще называют, материального, как одна сторона монеты от другой. Если это так, то вопрос о его происхождении снимается или, скорее, он равносилен вопросу о происхождении материального мира. Тогда, однако, придется признать, что внутренний мир есть и у камней и вообще сознание разлито во всей природе. Если же думать, как, по-видимому, думают все те, кто полагает, что внутренний мир присущ лишь системам (или организмам) достаточно сложным, что внутренний мир возникает на каком-то этапе развития мира материального, то как же это происходит? Почему у живого мозга есть внутренняя сторона, а у кристалла или даже у мертвого мозга ее нет? Здесь перед нами как бы возникновение из ничего — никакой аналогии для возникновения внутреннего мира, кроме возникновения самой Вселенной, я подыскать не могу. Кстати, как я уже упоминал в медитации «Антропный принцип», слово «сотворил» употребляется в первой главе Книги Бытия всего три раза. Бог сотворил только три вещи: «небо и землю», «душу животных пресмыкающихся» и человека. Первое можно понимать как материальный мир, второе — как мир эмоций и чувств, присущий существам с нервной системой, а третье — как рефлектирующее сознание, присущее только человеку.
Медитация. Разумная конструкция
И под личиной вещества бесстрастной Везде огонь Божественный горит.Вл. Соловьев-
Вселенная постепенно вырисовывается скорее как великая Мысль, чем как большая машина. Дж. ДжинсКогда волнуется желтеющая нива,
И свежий лес шумит при звуке ветерка,
И прячется в саду малиновая слива
Под тенью сладостной зеленого листка;Когда, росой обрызганный душистой,
Румяным вечером иль утра в час златой,
Из-под куста мне ландыш серебристый
Приветливо кивает головой;Когда студеный ключ играет по оврагу
И, погружая мысль в какой-то смутный сон,
Лепечет мне таинственную сагу
Про мирный край, откуда мчится он, —Тогда смиряется души моей тревога,
Тогда расходятся морщины на челе, —
И счастье я могу постигнуть на земле,
И в небесах я вижу Бога…
Лермонтов
Поэт говорит о том, как через созерцание природы ему открывается Бог.
В наши дни такой подход усиленно оспаривается и в качестве главного аргумента приводится теория Дарвина. Споры вокруг этой теории не утихают по обе стороны океана.
С одной стороны выступают люди религиозного мировоззрения, которые указывают на сложную организацию окружающего нас мира, где каждая часть, по-видимому, соответствует другой части с точностью, почти что непостижимой для человеческого ума и уж во всяком случае невоспроизводимой. По мнению теистов, сие есть свидетельство того, что мир создан и управляется могучим интеллектом, бесконечно превосходящим интеллект человека, хотя в чем-то и сходным с ним (как я уже говорил ранее, без этого сходства мы не смогли бы оценить красоты и сложности представленной нам картины мироздания).
С другой стороны выступают, скажем так, прогрессисты, которые говорят, что то кажущееся совершенство или, вернее сказать, высокая степень организации, которую мы наблюдаем в окружающей нас природе, есть плод невообразимо долгого процесса, состоящего из длинной цепочки проб и ошибок, в которой неудачные экземпляры безжалостно отбраковывались.
Действительно ли принятие эволюции исключает теизм? Или же она исключает только такой теизм, который настаивает на том, что мир был создан за шесть человеческих земных дней? Я уже говорил ранее, что даже в далеком прошлом находились мыслители (например, святой Августин или Филон Александрийский), которые не усмотрели бы здесь никакого противоречия. Если обратиться к не столь давним временам, то можно вспомнить современника Дарвина Владимира Соловьева, который, будучи человеком весьма религиозным, с энтузиазмом воспринял дарвинизм.
Попробуем разобраться в этом. Во-первых, правильно ли здесь уделять такое внимание эволюции животного мира? Безусловно, живые организмы являют собой наиболее разительный пример сложности и целесообразности. Следует, однако, заметить, что проблема происхождения и развития жизни является все-таки частным случаем более общей проблемы возможности возникновения сложно организованных систем из систем, организованных просто. А между тем не только история развития жизни, но и вся история мироздания, насколько она нам известна, представляется движением от простого к сложному. История жизни есть лишь часть этого более общего движения. И возникает она не на пустом месте, поскольку от Большого взрыва до первых микробов нужно было пройти длинный путь — например, создать всю периодическую систему элементов. Поскольку элементы тяжелее водорода и гелия формируются в ходе термоядерных реакций, идущих в недрах звезд, для их создания было необходимо, чтобы образовались, отгорели и взорвались несколько их поколений. Этот процесс занял около десяти миллиардов лет, на протяжении которых появлялись все более сложно организованные формы материи, не ведая никакого дарвиновского отбора (до возникновения жизни никто не вымирал за неприспособленностью). Процесс усложнения, который многими принимается за некую данность, мог оборваться на каждом шагу. Так, можно представить себе Вселенную, в которой нет ничего сложнее атомов, и даже такую, где нет ничего сложнее элементарных частиц. Возникновение и относительная устойчивость любой организованной формы материи (атомов, простых молекул, органических молекул, клеток, живых организмов) требует строгого соблюдения баланса различных сил, действующих во Вселенной. Дарвинизм делает сильный упор на роль случайностей в процессе развития жизни. Однако случайность и необходимость всегда выступают в природе вместе, и всякий раз, когда выпячивается что-то одно, получается однобокая, искаженная картина.
Однажды я присутствовал на чрезвычайно интересном докладе, где докладчик, физик по образованию, обсуждал проблему свертывания белков (protein folding), используя как пример образование молекул РНК. Молекулы эти играют первостепенную роль в функционировании живых организмов, выполняя, среди прочего, роль курьеров, переносящих инструкции по изготовлению белков от мест, где хранится информация о том, какие белки нужны организму, до мест, где эти белки производятся. Информация о всех белках и способах их производства хранится в огромных молекулах, называемых ДНК, каждую из которых можно сравнить с поваренной книгой, где записаны рецепты производства разнообразных блюд. РНК же является как бы страничкой из этой книги; нужно, скажем, изготовить борщ или гуляш, так вместо того, чтобы тащить на кухню всю книгу, копируют страничку с соответствующим рецептом и посылают на кухню. Тонкость состоит в том, что страничку посылают в сложенном (или, скорее, скомканном) виде, так оказывается удобнее. Проблема в том, как складывать (или комкать), а потом разворачивать (разглаживать) такие странички. РНК и есть проблема сворачивания белков, в которой пытался разобраться автор доклада. По ходу дела он показывал картинки типичных молекул РНК в их свернутом виде. Впечатление было как от чего-то безнадежно сложного, в чем человеческому уму нет и не будет никакой возможности разобраться. Тем не менее автор довольно успешно справился с этой задачей и на протяжении всего лишь часа представил математическую модель, довольно детально описывающую образование таких структур. Принципы этой модели чрезвычайно просты (не буду на них останавливаться), результат весьма сложен. Никаких физических законов, за исключением известных даже школьнику (во всяком случае, в мое время их в школе учили), для объяснения процесса не требуется. С другой стороны, на протяжении почти всего процесса никаких повторных попыток, никакого отбора не требовалось, сложнейшие структуры складывались «сами», следуя закону Кулона и элементарным правилам квантовой химии (ионная и ковалентная связь и т. п.). Отбор понадобился только на последней стадии, так как молекул производится слишком много и надо выбрать те, что подходят для жизни. Ну вот как будто мы пришли в супермаркет в незнакомой стране, на полках стоит масса товаров, этикетки читать не умеем, но, в общем-то, видно, что вот тут — джемы, а тут — сыры. Понятно, что мы не сразу выберем наилучшее, будут ошибки, но самое главное, что есть из чего выбирать. А почему? Почему материя может образовывать устойчивые сложные формы так, что жизни есть из чего выбирать?
Организм — по необходимости сложная система, и простой она в принципе быть не может, даже на уровне микроорганизмов, не говоря уже о разумной жизни. Это потому, что телу необходимо самообновляться, а следовательно, хранить где-то информацию о самом себе. Поэтому для жизни необходимо как минимум, чтобы существовали молекулы огромной длины (хранилища информации ДНК могут содержать миллиарды атомов), способные соединяться и функционировать совместно. Откуда же такие молекулы взялись, если вначале были лишь одни элементарные частицы, и как им удается быть устойчивыми? Добавьте к этому то, что молекулам этим нужно не просто быть, а нужно еще что-то делать, выполнять определенные функции. То есть нужно быть активными, но при этом не развалиться на куски. Такой баланс между активностью и устойчивостью предполагает соблюдение определенных условий. Например, простые живые организмы можно заморозить в холодильнике на тысячи лет, они не умрут, но и жить не будут. То есть тут условия баланса не соблюдаются. А как же получилось, что такие условия вообще существуют? Не в том смысле, что они существуют на планете Земля или где-нибудь еще (во Вселенной места много), а существуют в принципе?
Вот именно этот вопрос я и хочу обсудить, так как считаю, что именно здесь и происходит истинное чудо. Если на время оставить за пределами рассмотрения вопросы о происхождении материи и Вселенной как таковой, то принципы ее организации, на уровне нашего непосредственного восприятия, очень просты. А именно на этом уровне вполне годится модель, в которой есть атомы, состоящие из тяжелых ядер и легких электронов; их образование и динамика, равно как и формирование более сложных структур, как то: молекул, жидкостей и твердых тел, определяется законами квантовой механики и электромагнитным взаимодействием. Сложности, описанные в медитации «Слово „атом“ и его судьба», не будут нас касаться, если мы не будем заглядывать в глубь атомных ядер.
Если мы согласимся на такие правила игры, то на этом уровне все законы отлично известны. И коль скоро это так, то оказывается, что свободных параметров в задаче об организации материи практически не остается. И получается, что из весьма простых начальных посылок формируется невероятно сложный конечный результат — мир, в котором мы живем.
Чтобы не быть голословным, попробую нарисовать более развернутую картину. Пусть нам даны все элементы таблицы Менделеева в количестве достаточном, ну хоть в форме какого-то пылевого облака, из которых мы можем слепить планету какого угодно типа (ну хоть типа Земли) и поместить ее на соответствующее расстояние от какой нам нравится звезды (ну хоть типа нашего Солнца). Так что в наших руках создать какие угодно условия, в смысле температур и давлений. Вопрос номер один: по каким принципам будет организовываться вся эта пылевая материя? Вопрос номер два: что нужно для того, чтобы на сформировавшейся планете смогла возникнуть жизнь, а еще лучше, жизнь разумная? Как ни покажется это самонадеянным некоторым из читателей, наука полагает, что ответ на вопрос о принципах организации материи ей известен. Хотя ответа на вопрос о возникновении жизни не существует во вполне удовлетворительной форме, тут тоже есть что сказать.
Итак, в нашем облаке пыли есть вся таблица Менделеева. Это значит, у нас есть атомы всех сортов (откуда это все взялось, нас здесь не касается). Как известно, атомы состоят из положительно заряженного ядра и отрицательно заряженного облака электронов, это ядро окружающего. Всякий заряд в природе кратен элементарному заряду, обозначаемому в физике латинской буквой е; заряд электрона — е, а заряд ядра атома элемента, несущего номер I в таблице Менделеева, есть +Ze. Вот, например, водород стоит в таблице на первом месте, значит, Z= 1, а кислород на 8-м, значит Z=8. Что еще нам нужно знать про ядра? Нужно знать, какая у них масса. Каждое ядро состоит из положительно заряженных протонов количеством Z и незаряженных нейтронов, количество которых может быть разным. Ядра с одинаковым Z, но разным количеством нейтронов, называются изотопами данного элемента. Например, водород может существовать в трех формах: собственно водород (один протон, нет нейтронов), дейтерий (один протон, один нейтрон) и тритий (один протон, два нейтрона). Как правило, только один, от силы два изотопа данного элемента являются долгоживущими, остальные неустойчивы относительно радиоактивного распада. Массы протона и нейтрона известны, их отношение Мn/Mp=1,0084. Еще нам нужна масса электрона, вернее, ее отношение к массе протона: тe/Мр = 1/1684. Теперь представим, что наше облако как-то сжалось, образовав планету, и из газа отдельных атомов начинают формироваться разные структуры: молекулы, жидкости, кристаллы — всё, что нас окружает и что нам необходимо для жизни, включая наши тела.
Чтобы все это произошло и вещество не разлетелось по сторонам, нужна, конечно, сила гравитации, но, предположим, она есть в количестве достаточном. Это все, что нам надо про нее знать, так как на поведение материи на малых расстояниях гравитация влияния не оказывает. Она нужна для большой картины, для того, чтобы Вселенная как целое не развалилась, а мы здесь обсуждаем, так сказать, тонкие детали. Нас интересует, что нужно, чтобы из ядер и электронов что-то соорудить. Тут нужна организующая сила, которой является сила электромагнитная. В своем наиболее элементарном проявлении она необычайно проста: два точечных заряда Q1 и Q2 взаимодействуют с силой, направленной вдоль соединяющей их линии, величина которой обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению зарядов. Закон Кулона. Следовательно, заряды одного знака отталкиваются, а заряды противоположного знака притягиваются. Оговорюсь, что закон Кулона предполагает, что заряды не движутся относительно друг друга; если они движутся, то возникает еще дополнительная более слабая сила (сила Лоренца), но это уже детали.
Теперь необходимо знать, как под действием этих сил материя будет двигаться. Это описывает квантовая механика, которая на уровне доступных нашим чувствам макроскопических объектов плавно переходит в хорошо знакомую по школе классическую механику Ньютона. Не углубляясь в подробности, скажу, что всей организацией материи заведует еще одно число, постоянная тонкой структуры α = 1/137 (равенство здесь является приблизительным), составленная из заряда электрона, постоянной Планка и скорости света. Объясню ее смысл на примере. Допустим, у нас есть простейший атом — атом водорода (Z =1, один электрон). Как учит нас квантовая механика, энергия электрона в атоме водорода может принимать только дискретные значения; они известны: Еп = — (тeс2) α2/2n2, где n — целое число (1, 2, 3…), a с — скорость света. Возьмем какой-нибудь другой атом, например, атом гелия (Z =2, два электрона). Спектр его энергий будет опять-таки дискретный, и, хотя такого простого выражения, как для спектра атома водорода, у нас и не имеется, все эти энергии будут опять-таки пропорциональны величине — (тeс2) α2. Нечто подобное имеет место для всех решительно атомов (для дотошного читателя я даю точную формулировку, а именно, энергии электронов в атоме с атомным номером Z даются в виде бесконечного ряда по четным степеням постоянной тонкой структуры: Еп = — (тeс2) α2 [А1(n,Z) + α2 A2(n,Z) + α4 A3(n,Z) +…], где коэффициенты А1, А2… есть некие числа).
Массы протона и нейтрона будут входить в выражения для энергий молекул.Есть простая и наглядная аналогия того, что здесь выражено несколько формальным языком. А именно, каждый атом похож на музыкальный инструмент. Инструмент этот издает звуки только определенного тона, это его спектр. У атомов водорода одна музыка, у атомов углерода другая, у кальция — третья и т. д. Когда атомы объединяются в молекулы (а не каждый с каждым еще и пожелает объединиться, а если объединятся, то могут и размежеваться, да еще и с большим шумом, на этом вся взрывчатка основана), возникает новый тон и т. д. Существенная разница между нашими музыкальными инструментами и атомами в том, что каждый инструмент имеет систему настройки. Задача о согласном звучании инструментов в оркестре решается путем настройки каждого инструмента. А вот у атома ручки настройки нет. То есть на весь оркестр из 1028 атомов, составляющих наше тело, есть ТРИ ручки, регулирующие три числа: Мп/Мр,те/Мр, α.
Теперь представь, читатель, что тебе дана задача из всех этих атомов построить живую клетку. Она состоит из множества атомов разных сортов (сортов этих на самом деле не так уж много, активную роль в деятельности клетки играют всего лишь около десятка элементов), объединенных в молекулы. Все это должно соединиться, не распасться, но и не держаться слишком прочно друг за друга, так как жизнь — штука динамическая, должен происходить обмен веществ, то есть молекулы должны относительно свободно перемещаться, набирать энергию в одном месте, отдавать ее в другом. Короче говоря, создать надо из всех наличных деталей (атомов) работающий организм. Или, по приведенной выше аналогии, нужно из отдельных инструментов создать оркестр. И менять ты, читатель, можешь только три параметра: Мп/Мр,те/Мр, α, которые определяют силу мириад разных химических связей, пространственную структуру молекул (а эта структура определяет их роль и функции в организме). И все потому, что только от этих чисел отношения энергий и зависят. (По правде говоря, вряд ли и эти-то числа можно менять, так как они, возможно, фиксированы другими соображениями. Однако забудем об этом на минуту.) То есть, оперируя всего тремя параметрами, нужно добиться того, чтобы существовали такие условия (хотя бы в принципе существовали, о реализации их даже речи здесь не идет!), при которых молекулы практически произвольной длины были бы: а) относительно устойчивы; б) могли бы активно реагировать и обмениваться энергией с другими молекулами. Совершенно не очевидно, что поставленная таким образом задача имеет решение. Напротив, общее правило таково, что задачи, в которых количество условий, которым нужно удовлетворить, превосходят количество параметров, которые можно менять, НЕ ИМЕЮТ решения. То есть само существование мира, в котором возможна жизнь, противоречит разумным ожиданиям (другое дело, что мы об этом, как правило, не задумываемся, принимая просто за данность). Математик и философ Лейбниц когда-то говорил, что, хотя мы не живем в наилучшем из миров, мы живем в наилучшем из возможных миров. Парадоксально заостряя эту мысль, я бы сказал, что мы живем в НЕВОЗМОЖНОМ мире.
Не слишком ли я сгущаю краски, сократив количество «рычагов управления» только до трех? Казалось бы, остается еще некая свобода выбирать то, из чего живые молекулы строить. На самом деле свободы этой практически нет, так как их свойства диктуются их функцией. А именно: для изготовления длинных молекулярных цепей годятся только четырехвалентные элементы (таких элементов два — углерод (химический символ С) и кремний (Si)).
Две из четырех связей каждый атом такого элемента тратит на то, чтобы соединиться с такими же, как он, атомами в цепочку. Две оставшиеся связи он протягивает, как руки, навстречу окружающему миру, и на них садятся другие атомы. Получается как бы строчка, на которую садятся буквы-атомы или целые молекулы.
Так что для хранения информации в клетках нужны именно такие элементы, какими в нашем мире являются углерод или кремний, именно с такими свойствами. И еще в качестве топлива нужен такой элемент, как наш кислород. Кстати, также нужно, чтобы энергии, выделяемые при разных химических реакциях, сопровождающих живые процессы, не разрушали сами клетки, в которых они происходят, и т. п. То есть нужен баланс, баланс и еще раз баланс, как в оркестре, а рычагов настройки только три…
Надеюсь, из всего сказанного понятно, что по-настоящему глубокие вопросы о самой возможности существования жизни были решены не отбором, а элегантным, невероятно простым по исходным посылкам и непостижимо сложным по следствиям выбором исходных принципов построения мироздания.
То, что задача о построении Вселенной, в которой возможны такие сложные структуры, как ДНК, вообще имеет решение, есть факт отнюдь не очевидный. Если мы ему не удивляемся, то только по привычке воспринимать этот мир как нечто, полученное даром. Отбор же, в какой бы форме он ни осуществлялся, по Дарвину или как-нибудь еще, есть только, так сказать, наведение марафета. Оперирует он уже на весьма сложных структурах, чье существование никаким отбором не определяется. Да и случаен он лишь во вполне ограниченном смысле, так как случай здесь накладывается на неслучайную матрицу этих самых исходных (для биологии) структур.
Вполне возможно, что через то, что воспринимается нами как случай, выражается та свобода, которая предоставлена творению. Допустим, процесс отбора пошел бы несколько иным путем, так что разум воплотился бы не в существо, подобное обезьяне, а в дельфина или даже в осьминога. И что же? Это существо так же творило бы, спорило, а может быть, и воевало. Образ Божий ведь не форма тела. А форма тела — это уже детали, «прах земной».
Многих верующих невероятно волнует то, что теория эволюции утверждает, что «человек произошел от обезьяны». Им это кажется абсолютным скандалом. Я никогда не понимал, почему это должно кого-то волновать. Во-первых, происходить от кого-либо не означает быть им. Я не являюсь повторением своего отца, хотя и происхожу от него, так же как мой сын не является повторением меня. Между нами и нашими обезьяноподобными предками дистанция неизмеримо большего размера, чем между отцами и детьми. Обезьяны, несмотря на свое несомненное сходство с людьми во многих отношениях, так же, несомненно, отличаются от людей. Это означает, что на пути от обезьяны к человеку произошло что-то поистине грандиозное, что и определило эту разницу. Тех, кто думает, что наше происхождение от обезьяны делает нас хуже, я хочу спросить: какова альтернатива? Вы предпочитаете быть слепленным непосредственно из элементов таблицы Менделеева в обход эволюционного процесса? Прямо буквально из пыли? Чем это было бы лучше?
Короче говоря, накал страстей вокруг теории эволюции я считаю недоразумением. Правы ли дарвинисты во всем или в чем-то ошибаются, есть вопрос частный и не имеющий отношения к разумности мироздания и существованию Божества. Вопрос этот должен решаться научными методами.
Я уверен, что человек может спокойно созерцать мир, не боясь внутреннего конфликта между верой и разумом, и повторять вслед за Лермонтовым:Тогда смиряется души моей тревога,
Тогда расходятся морщины на челе, —
И счастье я могу постигнуть на земле,
И в небесах я вижу Бога…Заключение
Надеюсь, читатель заметил, что в своих идеалистических рассуждениях о физике я воздерживался от защиты какого-то определенного вероисповедания. Моей целью было показать, что, в отличие от мнения материалистов, данные науки дают основания полагать, что природа задумана по определенному плану, который включает и нас с вами. Как я старался продемонстрировать в последней медитации, Вселенная, какой мы ее знаем, представляется разуму совершенно невозможной вещью. То, что эта невозможная вещь, так сказать, дана нам в ощущении, ведь что-нибудь да значит!
Некоторые могут удивиться тому, что я не обсуждаю темы, которые обычно обсуждаются в разделе «наука и религия», такие как Большой взрыв, теория струн, идеи о множественности вселенных и т. п. Это потому, что я хотел ограничиться той физикой, которая уже совершенно несомненно установлена. Я просто прокомментировал содержание учебников. Для раскрытия моей темы достаточно и такой, почти школьной, физики, и поэтому мне не нужно обращаться к истокам времен или лететь к далеким звездам — все необходимые аргументы можно найти здесь, в любом комочке живой протоплазмы.
В одном мгновенье видеть вечность,
Огромный мир — в зерне песка,
В единой горсти — бесконечность,
И небо — в чашечке цветка. (Уильям Блейк)
Разумеется, помимо научных доводов в защиту атеизма, несостоятельность которых я старался обнаружить, можно приводить и множество других. Но так всегда было, от Лукреция Кара до Михаила Александровича Берлиоза — оглядываясь на историю, мы видим, что неверие так же старо, как вера. Спор между ними вечен. Даже в Библии одна из книг (Екклесиаст) предлагает видение мира, более свойственное атеистическому мировоззрению, в другой же книге (Иова) человек благодарит Бога «за все», значит, и за выпавшие на его долю страдания. О причинах этих страданий науке нечего сказать, но она может сказать и говорит о том, что мир не есть абсурд и случайность, что бытие разумно организовано и является отражением мира идей; что у человека в мире свое неслучайное место, а значит, в нашем существовании есть смысл, хотя, может быть, нам еще неведомый.
Полностью https://royallib.com/read/tsvelik_aleksey/gizn_v_nevozmognom_mire_kratkiy_kurs_fiziki_dlya_lirikov.html#737280
Рейтинг комментария: 14 6
Рейтинг комментария: 5 20
Рейтинг комментария: 19 2
Рейтинг комментария: 5 18
Рейтинг комментария: 2 0
Рейтинг комментария: 4 6
Рейтинг комментария: 0 0